Neuroprotective Agents in the Intensive Care Unit: -Neuroprotective Agents in ICU - (2024)

1. Jain KK. The handbook of neuroprotection. Humana; New York: 2011. [CrossRef] [Google Scholar]

2. Porter D, Johnston AM, Henning J. Medical Conditions Requiring Intensive Care. Journal of the Royal Army Medical Corps. 2009;155:141–146. doi:10.1136/jramc-155-02-13. [PubMed] [CrossRef] [Google Scholar]

3. Peisker T, Koznar B, Stetkarova I, Widimsky P. Acute stroke therapy: A review. Trends in Cardiovascular Medicine. 2017;27:59–66. doi:10.1016/j.tcm.2016.06.009. [PubMed] [CrossRef] [Google Scholar]

4. Tahir R, Pabaney A. Therapeutic hypothermia and ischemic stroke: A literature review. Surgical Neurology International. 2016;7:381. doi:10.4103/2152-7806.183492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Gonzalez-Ibarra FP, Varon J, Lopez-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Frontiers in Neurology. 2011;2:4. doi:10.3389/fneur.2011.00004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Great Britain. Department of Health. Comprehensive critical care: a review of adult critical care services. Department of Health; London: 2000. [Google Scholar]

7. Parrillo JE, Dellinger RP. Critical care medicine: principles of diagnosis and management in the adult. Elsevier Mosby; St. Louis, Mo., London: 2008. [Google Scholar]

8. Chong J, Dumont T, Francis-Frank L, Balaan M. Sepsis and Septic Shock. Critical Care Nursing Quarterly. 2015;38:111–120. doi:10.1097/CNQ.0000000000000052. [PubMed] [CrossRef] [Google Scholar]

9. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign Guidelines Committee including The Pediatric S. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 2013;39:165–228. doi:10.1007/s00134-012-2769-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. New England Journal of Medicine. 2013;369:840–851. doi:10.1056/NEJMra1208623. [PubMed] [CrossRef] [Google Scholar]

11. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. Journal of the American Medical Association. 2009;302:2323–9. doi:10.1001/jama.2009.1754. [PubMed] [CrossRef] [Google Scholar]

12. Mock C, Lormand JD, Goosen J, Joshipura M, Peden M. Guidelines for essential trauma care. Geneva: World Health Organization; 2004. [Google Scholar]

13. Shen Q, Hiebert JB, Hartwell J, Thimmesch AR, Pierce JD. Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews on Evidence-Based Nursing. 2016;13:380–389. doi:10.1111/wvn.12167. [PubMed] [CrossRef] [Google Scholar]

14. Gruenbaum SE, Zlotnik A, Gruenbaum BF, Hersey D, Bilotta F. Pharmacologic Neuroprotection for Functional Outcomes After Traumatic Brain Injury: A Systematic Review of the Clinical Literature. CNS Drugs. 2016;30:791–806. doi:10.1007/s40263-016-0355-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Park E, Bell JD, Baker AJ. Traumatic brain injury: Can the consequences be stopped? Canadian Medical Association Journal. 2008;178:1163–1170. doi:10.1503/cmaj.080282. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysm. Annals of Medicine. 2014;46:597–606. doi:10.3109/07853890.2014.949299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Wills S, Ronkainen A, van der Voet M, Kuivaniemi H, Helin K, Leinonen E, et al. Familial intracranial aneurysms: an analysis of 346 multiplex Finnish families. Stroke. 2003;34:1370–4. doi:10.1161/01.STR.0000072822.35605.8B. [PubMed] [CrossRef] [Google Scholar]

18. Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, et al. Pathophysiology and Biomarkers in Acute Ischemic Stroke – A Review. Tropical Journal of Pharmaceutical Research. 2014;12:1097. doi:10.4314/tjpr.v12i6.35. [CrossRef] [Google Scholar]

19. Liou AKF, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Progress in Neurobiology. 2003;69:103–142. doi:10.1016/S0301-0082(03)00005-4. [PubMed] [CrossRef] [Google Scholar]

20. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology. 2007;35:495–516. doi:10.1080/01926230701320337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Graham SH, Chen J. Programmed Cell Death in Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism. 2001:99–109. doi:10.1097/00004647-200102000-00001. [PubMed] [CrossRef] [Google Scholar]

22. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica. 2009;30:379–387. doi:10.1038/aps.2009.24. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Sims NR, Zaidan E. Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. International Journal of Biochemistry & Cell Biology. 1995;27:531–50. doi:10.1016/1357-2725(95)00026-L. [PubMed] [CrossRef] [Google Scholar]

24. Ndountse LT, Chan HM. Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicology Letters. 2009;184:50–5. doi:10.1016/j.toxlet.2008.10.013. [PubMed] [CrossRef] [Google Scholar]

25. Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nature Neuroscience. 2002;5:633–9. doi:10.1038/nn0702-633. [PubMed] [CrossRef] [Google Scholar]

26. Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Molecular Neurobiology. 2003;27:325–55. doi:10.1385/MN:27:3:325. [PubMed] [CrossRef] [Google Scholar]

27. Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. Journal of Cell Science. 2006;119:339–49. doi:10.1242/jcs.02734. [PubMed] [CrossRef] [Google Scholar]

28. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacological Reviews. 2002;54:271–84. doi:10.1124/pr.54.2.271. [PubMed] [CrossRef] [Google Scholar]

29. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxidants & Redox Signaling. 2011;14:1505–1517. doi:10.1089/ars.2010.3576. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, et al. Antioxidant gene therapy against neuronal cell death. Pharmacology & Therapeutics. 2014;142:206–230. doi:10.1016/j.pharmthera.2013.12.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surgical Neurology. 2006;66:232–245. doi:10.1016/j.surneu.2005.12.028. [PubMed] [CrossRef] [Google Scholar]

32. Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular Mechanisms of Apoptosis in Cerebral Ischemia: Multiple Neuroprotective Opportunities. Molecular Neurobiology. 2007;37:7–38. doi:10.1007/s12035-007-8013-9. [PubMed] [CrossRef] [Google Scholar]

33. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. Journal of Neurochemistry. 2009;109:133–138. doi:10.1111/j.1471-4159.2009.05897.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 Experimental treatments in acute stroke. Annals of Neurology. 2006;59:467–477. doi:10.1002/ana.20741. [PubMed] [CrossRef] [Google Scholar]

35. Danysz W, Parsons CG. Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotoxicity Research. 2002;4:119–26. doi:10.1080/10298420290015872. [PubMed] [CrossRef] [Google Scholar]

36. Schauwecker PE. Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Experimental Neurology. 2010;224:207–218. doi:10.1016/j.expneurol.2010.03.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Milani D, Cross JL, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Neuroprotective efficacy of poly-arginine R18 and NA-1 (TAT-NR2B9c) peptides following transient middle cerebral artery occlusion in the rat. Neuroscience Research. 2017;114:9–15. doi:10.1016/j.neures.2016.09.002. [PubMed] [CrossRef] [Google Scholar]

38. Milani D, Knuckey NW, Anderton RS, Cross JL, Meloni BP. The R18 Polyarginine Peptide Is More Effective Than the TAT-NR2B9c (NA-1) Peptide When Administered 60 Minutes after Permanent Middle Cerebral Artery Occlusion in the Rat. Stroke Research and Treatment. 2016;2016:1–9. doi:10.1155/2016/2372710. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Cook DJ, Teves L, Tymianski M. A Translational Paradigm for the Preclinical Evaluation of the Stroke Neuroprotectant Tat-NR2B9c in Gyrencephalic Nonhuman Primates. Science Translational Medicine. 2012;4:154ra133–154ra133. doi:10.1126/scitranslmed.3003824. [PubMed] [CrossRef] [Google Scholar]

40. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, terBrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2012;11:942–950. doi:10.1016/S1474-4422(12)70225-9. [PubMed] [CrossRef] [Google Scholar]

41. Ayuso MI, Montaner J. Advanced neuroprotection for brain ischemia: an alternative approach to minimize stroke damage. Expert Opinion on Investigational Drugs. 2015;24:1137–1142. doi:10.1517/13543784.2015.1065040. [PubMed] [CrossRef] [Google Scholar]

42. Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, et al. Inhibition ofN-Methyl-d-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. Journal of Biological Chemistry. 2015;290:22030–22048. doi:10.1074/jbc.M115.662791. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Meloni BP, Brookes LM, Clark VW, Cross JL, Edwards AB, Anderton RS, et al. Poly-Arginine and Arginine-Rich Peptides are Neuroprotective in Stroke Models. Journal of Cerebral Blood Flow & Metabolism. 2015;35:993–1004. doi:10.1038/jcbfm.2015.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Fugere M, Appel J, Houghten RA, Lindberg I, Day R. Short Polybasic Peptide Sequences Are Potent Inhibitors of PC5/6 and PC7: Use of Positional Scanning-Synthetic Peptide Combinatorial Libraries as a Tool for the Optimization of Inhibitory Sequences. Molecular Pharmacology. 2006;71:323–332. doi:10.1124/mol.106.027946. [PubMed] [CrossRef] [Google Scholar]

45. Akhtar MI, Ullah H, Hamid M. Magnesium, a drug of diverse use. Journal of Pakistan Medical Association. 2011;61:1220–5. [PubMed] [Google Scholar]

46. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension. 2016;68:324–33. doi:10.1161/HYPERTENSIONAHA.116.07664. [PubMed] [CrossRef] [Google Scholar]

47. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Guerrero-Romero F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacological Research. 2016;111:272–82. doi:10.1016/j.phrs.2016.06.019. [PubMed] [CrossRef] [Google Scholar]

48. Sharma P, Chung C, Vizcaychipi M. Magnesium: The Neglected Electrolyte? A Clinical Review. Pharmacology & Pharmacy. 2014;05:762–772. doi:10.4236/pp.2014.57086. [CrossRef] [Google Scholar]

49. McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. Journal of Neurotrauma. 1998;15:731–69. doi:10.1089/neu.1998.15.731. [PubMed] [CrossRef] [Google Scholar]

50. Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM. Predictive value of serum ionized but not total magnesium levels in head injuries. Scandinavian Journal of Clinical and Laboratory Investigation. 1995;55:671–7. doi:10.3109/00365519509075397. [PubMed] [CrossRef] [Google Scholar]

51. Afshari D, Moradian N, Rezaei M. Evaluation of the intravenous magnesium sulfate effect in clinical improvement of patients with acute ischemic stroke. Clinical Neurology and Neurosurgery. 2013;115:400–4. doi:10.1016/j.clineuro.2012.06.001. [PubMed] [CrossRef] [Google Scholar]

52. Bharosay A, Bharosay VV, Varma M, Saxena K, Sodani A, Saxena R. Correlation of Brain Biomarker Neuron Specific Enolase (NSE) with Degree of Disability and Neurological Worsening in Cerebrovascular Stroke. Indian J Clin Biochem. 2012;27:186–90. doi:10.1007/s12291-011-0172-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Gonzalez-Garcia S, Gonzalez-Quevedo A, Fernandez-Concepcion O, Pena-Sanchez M, Menendez-Sainz C, Hernandez-Diaz Z, et al. Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clinical Biochemistry. 2012;45:1302–7. doi:10.1016/j.clinbiochem.2012.07.094. [PubMed] [CrossRef] [Google Scholar]

54. Lee TM, Ivers NM, Bhatia S, Butt DA, Dorian P, et al. Improving stroke prevention therapy for patients with atrial fibrillation in primary care: protocol for a pragmatic, cluster-randomized trial. Implementation Science. 2016;11:159. doi:10.1186/s13012-016-0523-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Lip GYH. Optimizing stroke prevention in elderly patients with atrial fibrillation. Journal of Thrombosis and Haemostasis. 2016;14:2121–2123. doi:10.1111/jth.13480. [PubMed] [CrossRef] [Google Scholar]

56. Mazurek M, Lip GY. To occlude or not? Left atrial appendage occlusion for stroke prevention in atrial fibrillation. Heart. 2017;103:93–95. doi:10.1136/heartjnl-2016-310255. [PubMed] [CrossRef] [Google Scholar]

57. Mizukoshi G, Katsura K-I, Katayama Y. Urinary 8-hydroxy-2′-deoxyguanosine and serum S100βin acute cardioembolic stroke patients. Neurological Research. 2013;27:644–646. doi:10.1179/016164105X25153. [PubMed] [CrossRef] [Google Scholar]

58. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372:528–36. doi:10.1056/NEJMoa1408827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Singh H, Jalodia S, Gupta MS, Talapatra P, Gupta V, Singh I. Role of magnesium sulfate in neuroprotection in acute ischemic stroke. Ann Indian Acad Neurol. 2012;15:177–80. doi:10.4103/0972-2327.99705. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Talkachova A, Jaakkola J, Mustonen P, Kiviniemi T, Hartikainen JEK, Palomäki A, et al. Stroke as the First Manifestation of Atrial Fibrillation. Plos One. 2016;11:e0168010. doi:10.1371/journal.pone.0168010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Akdemir H, Kulakszoğlu EO, Tucer B, Menkü A, Postalc L, Günald Ö. Magnesium Sulfate Therapy for Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Neurosurgery Quarterly. 2009;19:35–39. doi:10.1097/WNQ.0b013e31818d0ecf. [CrossRef] [Google Scholar]

62. Chen T, Carter BS. Role of magnesium sulfate in aneurysmal subarachnoid hemorrhage management: A meta-analysis of controlled clinical trials. Asian J Neurosurg. 2011;6:26–31. doi:10.4103/1793-5482.85632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Hassan T, Nassar M, Elhadi SM, Radi WK. Effect of magnesium sulfate therapy on patients with aneurysmal subarachnoid hemorrhage using serum S100B protein as a prognostic marker. Neurosurg Rev. 2012;35:421–7. doi:10.1007/s10143-011-0368-8. discussion 427. [PubMed] [CrossRef] [Google Scholar]

64. Muroi C, Terzic A, Fortunati M, Yonekawa Y, Keller E. Magnesium sulfate in the management of patients with aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, dose-adapted trial. Surg Neurol. 2008;69:33–9. doi:10.1016/j.surneu.2007.07.015. discussion 39. [PubMed] [CrossRef] [Google Scholar]

65. van den Bergh WM, Algra A, van Kooten F, Dirven CM, van Gijn J, Vermeulen M, et al. Magnesium sulfate in aneurysmal subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2005;36:1011–5. doi:10.1161/01.STR.0000160801.96998.57. [PubMed] [CrossRef] [Google Scholar]

66. Veyna RS, Seyfried D, Burke DG, Zimmerman C, Mlynarek M, Nichols V, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;96:510–4. doi:10.3171/jns.2002.96.3.0510. [PubMed] [CrossRef] [Google Scholar]

67. Westermaier T, Stetter C, Vince GH, Pham M, Tejon JP, Eriskat J, et al. Prophylactic intravenous magnesium sulfate for treatment of aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, clinical study. Crit Care Med. 2010;38:1284–90. doi:10.1097/CCM.0b013e3181d9da1e. [PubMed] [CrossRef] [Google Scholar]

68. Wong GK, Poon WS, Chan MT, Boet R, Gin T, Ng SC, et al. Plasma magnesium concentrations and clinical outcomes in aneurysmal subarachnoid hemorrhage patients: post hoc analysis of intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage trial. Stroke. 2010;41:1841–4. doi:10.1161/STROKEAHA.110.585232. [PubMed] [CrossRef] [Google Scholar]

69. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007;25:231–8. doi:10.1111/j.1460-9568.2006.05275.x. [PubMed] [CrossRef] [Google Scholar]

70. Koch SM, Warters RD, Mehlhorn U. The simultaneous measurement of ionized and total calcium and ionized and total magnesium in intensive care unit patients. J Crit Care. 2002;17:203–5. doi:10.1053/jcrc.2002.35813. [PubMed] [CrossRef] [Google Scholar]

71. Dabbagh OC, Aldawood AS, Arabi YM, Lone NA, Brits R, Pillay M. Magnesium supplementation and the potential association with mortality rates among critically ill non-cardiac patients. Saudi Med J. 2006;27:821–5. [PubMed] [Google Scholar]

72. Mirrahimi B, Mortazavi A, Nouri M, Ketabchi E, Amirjamshidi A, Ashouri A, et al. Effect of magnesium on functional outcome and paraclinical parameters of patients undergoing supratentorial craniotomy for brain tumors: a randomized controlled trial. Acta Neurochir (Wien) 2015;157:985–91. doi:10.1007/s00701-015-2376-x. discussion 991. [PubMed] [CrossRef] [Google Scholar]

73. James ML, Blessing R, Phillips-Bute BG, Bennett E, Laskowitz DT. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage. Biomarkers. 2009;14:388–94. doi:10.1080/13547500903015784. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Taylor F, Huffman MD, Macedo AF, Moore THM, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease. 2013. [PMC free article] [PubMed] [Google Scholar]

75. Banach M, Serban C, Sahebkar A, Mikhailidis DP, Ursoniu S, Ray KK, et al. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015;13:229. doi:10.1186/s12916-015-0459-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78. doi:10.1016/S0140-6736(05)67394-1. [PubMed] [CrossRef] [Google Scholar]

77. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab. 2015;19:554–62. doi:10.4103/2230-8210.163106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Bianconi V, Sahebkar A, Banach M, Pirro M. Statins, haemostatic factors and thrombotic risk. Curr Opin Cardiol. 2017 doi:10.1097/HCO.0000000000000397. [PubMed] [CrossRef] [Google Scholar]

79. Chrusciel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194–208. doi:10.1016/j.atherosclerosis.2016.07.897. [PubMed] [CrossRef] [Google Scholar]

80. Derosa G, Maffioli P, Reiner Z, Simental-Mendia LE, Sahebkar A. Impact of Statin Therapy on Plasma Uric Acid Concentrations: A Systematic Review and Meta-Analysis. Drugs. 2016;76:947–56. doi:10.1007/s40265-016-0591-2. [PubMed] [CrossRef] [Google Scholar]

81. Sahebkar A, Rathouska J, Derosa G, Maffioli P, Nachtigal P. Statin impact on disease activity and C-reactive protein concentrations in systemic lupus erythematosus patients: A systematic review and meta-analysis of controlled trials. Autoimmun Rev. 2016;15:344–53. doi:10.1016/j.autrev.2015.12.007. [PubMed] [CrossRef] [Google Scholar]

82. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GY, et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost. 2016;115:520–32. doi:10.1160/th15-08-0620. [PubMed] [CrossRef] [Google Scholar]

83. Sahebkar A, Rathouska J, Simental-Mendia LE, Nachtigal P. Statin therapy and plasma cortisol concentrations: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;103:17–25. doi:10.1016/j.phrs.2015.10.013. [PubMed] [CrossRef] [Google Scholar]

84. Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50–73. doi:10.1016/j.plipres.2015.08.003. [PubMed] [CrossRef] [Google Scholar]

85. Sahebkar A, Ponziani MC, Goitre I, Bo S. Does statin therapy reduce plasma VEGF levels in humans? A systematic review and meta-analysis of randomized controlled trials. Metabolism. 2015;64:1466–76. doi:10.1016/j.metabol.2015.08.002. [PubMed] [CrossRef] [Google Scholar]

86. Sahebkar A, Kotani K, Serban C, Ursoniu S, Mikhailidis DP, Jones SR, et al. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis. 2015;241:433–42. doi:10.1016/j.atherosclerosis.2015.05.022. [PubMed] [CrossRef] [Google Scholar]

87. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GY, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015;5:9902. doi:10.1038/srep09902. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GYH, Muntner P, et al. Association between statin use and plasma d-dimer levels: A systematic review and meta-analysis of randomised controlled trials. Thrombosis and Haemostasis. 2015;114:546–557. doi:10.1160/TH14-11-0937. [PubMed] [CrossRef] [Google Scholar]

89. Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014;88:3–11. doi:10.1016/j.phrs.2014.03.002. [PubMed] [CrossRef] [Google Scholar]

90. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004–10. doi:10.1038/79510. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Asahi M, Huang Z, Thomas S, Yoshimura S, Sumii T, Mori T, et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:722–9. doi:10.1038/sj.jcbfm.9600070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Jain MK, Ridker PM. Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nature Reviews Drug Discovery. 2005;4:977–987. doi:10.1038/nrd1901. [PubMed] [CrossRef] [Google Scholar]

93. Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY. Antioxidant effects of statins in patients with atherosclerotic cerebrovascular disease. J Clin Neurol. 2014;10:140–7. doi:10.3988/jcn.2014.10.2.140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Parizadeh SMR, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids. 2011;46:333–340. doi:10.1007/s11745-010-3517-x. [PubMed] [CrossRef] [Google Scholar]

95. Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, Dirnagl U, et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke. 2000;31:2442–9. doi:10.1161/01.STR.31.10.2442. [PubMed] [CrossRef] [Google Scholar]

96. Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke. 2001;32:980–6. doi:10.1161/01.STR.32.4.980. [PubMed] [CrossRef] [Google Scholar]

97. Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY. Antioxidant Effects of Statins in Patients with Atherosclerotic Cerebrovascular Disease. Journal of Clinical Neurology. 2014;10:140. doi:10.3988/jcn.2014.10.2.140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Montaner J, Chacón P, Krupinski J, Rubio F, Millán M, Molina CA, et al. Simvastatin in the acute phase of ischemic stroke: a safety and efficacy pilot trial. European Journal of Neurology. 2007;15:82–90. doi:10.1111/j.1468-1331.2007.02015.x. [PubMed] [CrossRef] [Google Scholar]

99. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95:8880–5. doi:10.1073/pnas.95.15.8880. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Cordenier A, De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Luijckx GJ, et al. Pre-stroke use of statins on stroke outcome: a meta-analysis of observational studies. Acta Neurol Belg. 2011;111:261–7. [PubMed] [Google Scholar]

101. Hong KS, Lee JS. Statins in Acute Ischemic Stroke: A Systematic Review. Journal of Stroke. 2015;17:282–301. doi:10.5853/jos.2015.17.3.282. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/JNK signaling pathway in aging mouse model. Journal of Pineal Research. 2015;58:71–85. doi:10.1111/jpi.12194. [PubMed] [CrossRef] [Google Scholar]

103. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Current Neuropharmacology. 2017;15:434–443. doi:10.2174/1570159X14666161228122115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Rios ER, Venancio ET, Rocha NF, Woods DJ, Vasconcelos S, Macedo D, et al. Melatonin: pharmacological aspects and clinical trends. Int J Neurosci. 2010;120:583–90. doi:10.3109/00207454.2010.492921. [PubMed] [CrossRef] [Google Scholar]

105. Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005;26:412–9. doi:10.1016/j.tips.2005.06.006. [PubMed] [CrossRef] [Google Scholar]

106. Watson N, Diamandis T, Gonzales-Portillo C, Reyes S, Borlongan CV. Melatonin as an Antioxidant for Stroke Neuroprotection. Cell Transplantation. 2016;25:883–891. doi:10.3727/096368915X689749. [PubMed] [CrossRef] [Google Scholar]

107. Bandyopadhyay D, Biswas K, Bandyopadhyay U, Reiter RJ, Banerjee RK. Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical. J Pineal Res. 2000;29:143–51. doi:10.1034/j.1600-079X.2000.290303.x. [PubMed] [CrossRef] [Google Scholar]

108. Chahbouni M, Escames G, Venegas C, Sevilla B, García JA, López LC, et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from duch*enne muscular dystrophy. Journal of Pineal Research. 2010;48:282–289. doi:10.1111/j.1600-079X.2010.00752.x. [PubMed] [CrossRef] [Google Scholar]

109. Pei Z, Fung PC, Cheung RT. Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2003;34:110–8. doi:10.1034/j.1600-079X.2003.00014.x. [PubMed] [CrossRef] [Google Scholar]

110. Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci. 2008;70:747–50. doi:10.1292/jvms.70.747. [PubMed] [CrossRef] [Google Scholar]

111. Beni SM. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF- B and AP-1. The FASEB Journal. 2003 [PubMed] [Google Scholar]

112. Ozdemir D, Uysal N, Gonenc S, Acikgoz O, Sonmez A, Topcu A, et al. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res. 2005;54:631–7. [PubMed] [Google Scholar]

113. Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, et al. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neuroscience Letters. 2005;385:234–239. doi:10.1016/j.neulet.2005.05.055. [PubMed] [CrossRef] [Google Scholar]

114. Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. Journal of Pineal Research. 2013;54:303–312. doi:10.1111/jpi.12018. [PubMed] [CrossRef] [Google Scholar]

115. Reiter RJ, Mayo JC, Tan D-X, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research. 2016;61:253–278. doi:10.1111/jpi.12360. [PubMed] [CrossRef] [Google Scholar]

116. Chung E, Kong X, Goldberg MP, Stowe AM, Raman L. Erythropoietin-mediated neuroprotection in a pediatric mouse model of chronic hypoxia. Neurosci Lett. 2015;597:54–9. doi:10.1016/j.neulet.2015.04.026. [PubMed] [CrossRef] [Google Scholar]

117. Jelkmann W. Physiology and Pharmacology of Erythropoietin. Transfusion Medicine and Hemotherapy. 2013;40:302–309. doi:10.1159/000356193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Jurado Garcia JM, Torres Sanchez E, Olmos Hidalgo D, Alba Conejo E. Erythropoietin pharmacology. Clin Transl Oncol. 2007;9:715–22. doi:10.1007/s12094-007-0128-y. [PubMed] [CrossRef] [Google Scholar]

119. Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A. 2002;99:5627–31. doi:10.1073/pnas.082097299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Chen G, Zhang S, Shi J, Ai J, Hang C. Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 2009;45:162–168. doi:10.1016/j.cyto.2008.11.015. [PubMed] [CrossRef] [Google Scholar]

121. Sanchez PE, Fares RP, Risso JJ, Bonnet C, Bouvard S, Le-Cavorsin M, et al. Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons. Proc Natl Acad Sci U S A. 2009;106:9848–53. doi:10.1073/pnas.0901840106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Taoufik E, Petit E, Divoux D, Tseveleki V, Mengozzi M, Roberts ML, et al. TNF receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proceedings of the National Academy of Sciences. 2008;105:6185–6190. doi:10.1073/pnas.0801447105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences. 2000;97:10526–10531. doi:10.1073/pnas.97.19.10526. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–94. doi:10.1038/nrn1687. [PubMed] [CrossRef] [Google Scholar]

125. Sepúlveda P, Encabo A, Carbonell-Uberos F, Miñana MD. BCL-2 expression is mainly regulated by JAK/STAT3 pathway in human CD34+ hematopoietic cells. Cell Death and Differentiation. 2006;14:378–380. doi:10.1038/sj.cdd.4402007. [PubMed] [CrossRef] [Google Scholar]

126. Ding J, Wang J, Li QY, Yu JZ, Ma CG, Wang X, et al. Neuroprotection and CD131/GDNF/AKT Pathway of Carbamylated Erythropoietin in Hypoxic Neurons. Mol Neurobiol. 2016 [PubMed] [Google Scholar]

127. Chen J, Chen J, Yang Z, Zhang X. Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection. Biochemistry Insights. 2016;25 [PMC free article] [PubMed] [Google Scholar]

128. Clausen F, Marklund N, Lewen A, Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma. 2008;25:1449–57. doi:10.1089/neu.2008.0585. [PubMed] [CrossRef] [Google Scholar]

129. Kwon TH, Chao DL, Malloy K, Sun D, Alessandri B, Bullock MR. Tempol, a novel stable nitroxide, reduces brain damage and free radical production, after acute subdural hematoma in the rat. J Neurotrauma. 2003;20:337–45. doi:10.1089/089771503765172291. [PubMed] [CrossRef] [Google Scholar]

130. Kato N, Yanaka K, Hyodo K, Homma K, Nagase S, Nose T. Stable nitroxide Tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res. 2003;979:188–93. doi:10.1016/S0006-8993(03)02918-4. [PubMed] [CrossRef] [Google Scholar]

131. Rak R, Chao DL, Pluta RM, Mitchell JB, Oldfield EH, Watson JC. Neuroprotection by the stable nitroxide Tempol during reperfusion in a rat model of transient focal ischemia. J Neurosurg. 2000;92:646–51. doi:10.3171/jns.2000.92.4.0646. [PubMed] [CrossRef] [Google Scholar]

132. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H-C, et al. NXY-059 for Acute Ischemic Stroke. New England Journal of Medicine. 2006;354:588–600. doi:10.1056/NEJMoa052980. [PubMed] [CrossRef] [Google Scholar]

133. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, et al. NXY-059 for the Treatment of Acute Ischemic Stroke. New England Journal of Medicine. 2007;357:562–571. doi:10.1056/NEJMoa070240. [PubMed] [CrossRef] [Google Scholar]

134. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide. 2003;9:64–76. doi:10.1016/j.niox.2003.09.005. [PubMed] [CrossRef] [Google Scholar]

135. Maples KR, Ma F, Zhang YK. Comparison of the radical trapping ability of PBN, S-PPBN and NXY-059. Free Radic Res. 2001;34:417–26. doi:10.1080/10715760100300351. [PubMed] [CrossRef] [Google Scholar]

136. Strid S, Borga O, Edenius C, Jostell KG, Odergren T, Weil A. Pharmaco*kinetics in renally impaired subjects of NXY-059, a nitrone-based, free-radical trapping agent developed for the treatment of acute stroke. Eur J Clin Pharmacol. 2002;58:409–15. doi:10.1007/s00228-002-0478-x. [PubMed] [CrossRef] [Google Scholar]

137. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK, et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis. 2002;10:219–33. doi:10.1006/nbdi.2002.0514. [PubMed] [CrossRef] [Google Scholar]

138. Arii T, Kamiya T, Arii K, Ueda M, Nito C, Katsura K-I, et al. Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rats: Therapeutic time window for FK506 in transient focal ischemia. Neurological Research. 2013;23:755–760. doi:10.1179/016164101101199135. [PubMed] [CrossRef] [Google Scholar]

139. Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, Vanický I. Immunosuppressant FK506: Focusing on neuroprotective effects following brain and spinal cord injury. Life Sciences. 2012;91:77–82. doi:10.1016/j.lfs.2012.06.022. [PubMed] [CrossRef] [Google Scholar]

140. Sharifi Z-N, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat. Stroke Research and Treatment. 2012;2012:1–8. doi:10.1155/2012/809417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Zawadzka M, Kaminska B. A novel mechanism of FK506-mediated neuroprotection: Downregulation of cytokine expression in glial cells. Glia. 2005;49:36–51. doi:10.1002/glia.20092. [PubMed] [CrossRef] [Google Scholar]

142. Pillans P. Experimental and Clinical Pharmacology: Immunosuppressants - mechanisms of action and monitoring. Australian Prescriber. 2006;29:99–101. doi:10.18773/austprescr.2006.064. [CrossRef] [Google Scholar]

143. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351:2715–29. doi:10.1056/NEJMra033540. [PubMed] [CrossRef] [Google Scholar]

144. Szydlowska K, Gozdz A, Dabrowski M, Zawadzka M, Kaminska B. Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes: neuroprotective effect of FK506. Journal of Neurochemistry. 2010;113:904–918. doi:10.1111/j.1471-4159.2010.06656.x. [PubMed] [CrossRef] [Google Scholar]

145. Muramoto M, Yamazaki T, Nishimura S, Kita Y. Detailed in vitro pharmacological analysis of FK506-induced neuroprotection. Neuropharmacology. 2003;45:394–403. doi:10.1016/S0028-3908(03)00168-0. [PubMed] [CrossRef] [Google Scholar]

146. Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. The Cerebellum. 2007;6:308–314. doi:10.1080/14734220601142878. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM. A minireview on N-acetylcysteine: An old drug with new approaches. Life Sciences. 2016;151:359–363. doi:10.1016/j.lfs.2016.03.003. [PubMed] [CrossRef] [Google Scholar]

148. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain and Behavior. 2014;4:108–122. doi:10.1002/brb3.208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabrò G, et al. Beneficial effects ofn-acetylcysteine on ischaemic brain injury. British Journal of Pharmacology. 2000;130:1219–1226. doi:10.1038/sj.bjp.0703421. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Sen O, Caner H, Aydin MV, Ozen O, Atalay B, Altinors N, et al. The effect of mexiletine on the level of lipid peroxidation and apoptosis of endothelium following experimental subarachnoid hemorrhage. Neurol Res. 2006;28:859–63. doi:10.1179/016164106X115099. [PubMed] [CrossRef] [Google Scholar]

151. Findlay JM, Weir BK, Kanamaru K, Espinosa F. Arterial wall changes in cerebral vasospasm. Neurosurgery. 1989;25:736–45. doi:10.1227/00006123-198911000-00008. discussion 745–6. [PubMed] [CrossRef] [Google Scholar]

152. Chen G, Shi J, Hu Z, Hang C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008;2008 doi:10.1155/2008/716458. 716458. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Guney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y. N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73:42–9. doi:10.1016/j.surneu.2009.06.003. discussion e3. [PubMed] [CrossRef] [Google Scholar]

154. Pereira Filho Nde A, Pereira Filho Ade A, Soares FP, Coutinho LM. Effect of N-acetylcysteine on vasospasm in subarachnoid hemorrhage. Arq Neuropsiquiatr. 2010;68:918–22. doi:10.1590/S0004-282X2010000600017. [PubMed] [CrossRef] [Google Scholar]

155. Akca T, Canbaz H, Tataroglu C, Caglikulekci M, Tamer L, Colak T, et al. The Effect of N-Acetylcysteine on Pulmonary Lipid Peroxidation and Tissue Damage. Journal of Surgical Research. 2005;129:38–45. doi:10.1016/j.jss.2005.05.026. [PubMed] [CrossRef] [Google Scholar]

156. Frishman WH, Saunders E. beta-Adrenergic blockers. J Clin Hypertens (Greenwich) 2011;13:649–53. doi:10.1111/j.1751-7176.2011.00515.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Koch-Weser J, Frishman WH. beta-Adrenoceptor antagonists: new drugs and new indications. N Engl J Med. 1981;305:500–6. doi:10.1056/NEJM198108273050907. [PubMed] [CrossRef] [Google Scholar]

158. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, et al. The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab. 2000;20:1197–204. doi:10.1097/00004647-200008000-00005. [PubMed] [CrossRef] [Google Scholar]

159. Schroeppel TJ, Fischer PE, Zarzaur BL, Magnotti LJ, Clement LP, Fabian TC, et al. Beta-adrenergic blockade and traumatic brain injury: protective? J Trauma. 2010;69:776–82. doi:10.1097/TA.0b013e3181e981b8. [PubMed] [CrossRef] [Google Scholar]

160. Salim A, Hadji*zacharia P, Brown C, Inaba K, Teixeira PGR, Chan L, et al. Significance of Troponin Elevation After Severe Traumatic Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2008;64:46–52. doi:10.1097/TA.0b013e31815eb15a. [PubMed] [CrossRef] [Google Scholar]

161. Riordan WP, Cotton BA, Norris PR, Waitman LR, Jenkins JM, Morris JA. β-Blocker Exposure in Patients With Severe Traumatic Brain Injury (TBI) and Cardiac Uncoupling. The Journal of Trauma: Injury, Infection, and Critical Care. 2007;63:503–511. doi:10.1097/TA.0b013e3181271c34. [PubMed] [CrossRef] [Google Scholar]

162. Inaba K, Teixeira PGR, David J-S, Chan LS, Salim A, Brown C, et al. Beta-Blockers in Isolated Blunt Head Injury. Journal of the American College of Surgeons. 2008;206:432–438. doi:10.1016/j.jamcollsurg.2007.10.005. [PubMed] [CrossRef] [Google Scholar]

163. Hadji*zacharia P, O’Keeffe T, Brown CV, Inaba K, Salim A, Chan LS, et al. Incidence, risk factors, and outcomes for atrial arrhythmias in trauma patients. Am Surg. 2011;77:634–9. [PubMed] [Google Scholar]

164. Cotton BA, Snodgrass KB, Fleming SB, Carpenter RO, Kemp CD, Arbogast PG, et al. Beta-Blocker Exposure is Associated With Improved Survival After Severe Traumatic Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2007;62:26–35. doi:10.1097/TA.0b013e31802d02d0. [PubMed] [CrossRef] [Google Scholar]

165. Chakraborti AK, Garg SK, Kumar R, Motiwala HF, Jadhavar PS. Progress in COX-2 inhibitors: a journey so far. Curr Med Chem. 2010;17:1563–93. doi:10.2174/092986710790979980. [PubMed] [CrossRef] [Google Scholar]

166. Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME, et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Annals of Neurology. 2004;55:668–675. doi:10.1002/ana.20078. [PubMed] [CrossRef] [Google Scholar]

167. Stark DT, Bazan NG. Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci. 2011;31:13710–21. doi:10.1523/JNEUROSCI.3544-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Capone ML, Tacconelli S, Sciulli MG, Patrignani P. Clinical pharmacology of selective COX-2 inhibitors. Int J Immunopathol Pharmacol. 2003;16:49–58. [PubMed] [Google Scholar]

169. Bertolini A, Ottani A, Sandrini M. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem. 2002;9:1033–43. doi:10.2174/0929867024606650. [PubMed] [CrossRef] [Google Scholar]

170. Singh DP, Chopra K. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke. Pharmacol Biochem Behav. 2014;120:33–42. doi:10.1016/j.pbb.2014.02.006. [PubMed] [CrossRef] [Google Scholar]

171. Ahmad M, Zhang Y, Liu H, Rose ME, Graham SH. Prolonged opportunity for neuroprotection in experimental stroke with selective blockade of cyclooxygenase-2 activity. Brain Research. 2009;1279:168–173. doi:10.1016/j.brainres.2009.05.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Vinukonda G, Csiszar A, Hu F, Dummula K, Pandey NK, Zia MT, et al. Neuroprotection in a rabbit model of intraventricular haemorrhage by cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-alpha inhibition. Brain. 2010;133:2264–2280. doi:10.1093/brain/awq107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Sahebkar A. Curcumin: A Natural Multitarget Treatment for Pancreatic Cancer. Integrative Cancer Therapies. 2016;15:333–334. doi:10.1177/1534735415624139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Huang S, Beevers CS. Pharmacological and clinical properties of curcumin. Botanics: Targets and Therapy. 2011:5. [Google Scholar]

175. Mullaicharam AR, Maheswaran A. Pharmacological effects of curcumin. International journal of Nutrition, Pharmacology, Neurological Diseases. 2012;2:92. doi:10.4103/2231-0738.95930. [CrossRef] [Google Scholar]

176. Ghandadi M, Sahebkar A. Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des. 2016 [PubMed] [Google Scholar]

177. Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendia LE, Majeed M, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–82. doi:10.1016/j.biopha.2016.05.037. [PubMed] [CrossRef] [Google Scholar]

178. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34:1101–8. doi:10.1016/j.clnu.2014.12.019. [PubMed] [CrossRef] [Google Scholar]

179. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014;28:633–42. doi:10.1002/ptr.5045. [PubMed] [CrossRef] [Google Scholar]

180. Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49:580–8. doi:10.1258/acb.2012.012040. [PubMed] [CrossRef] [Google Scholar]

181. Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology. 2017;25:25–31. doi:10.1007/s10787-016-0301-4. [PubMed] [CrossRef] [Google Scholar]

182. Panahi Y, Alishiri GH, Parvin S, Sahebkar A. Mitigation of Systemic Oxidative Stress by Curcuminoids in Osteoarthritis: Results of a Randomized Controlled Trial. J Diet Suppl. 2016;13:209–20. doi:10.3109/19390211.2015.1008611. [PubMed] [CrossRef] [Google Scholar]

183. Panahi Y, Ghanei M, Hajhashemi A, Sahebkar A. Effects of Curcuminoids-Piperine Combination on Systemic Oxidative Stress, Clinical Symptoms and Quality of Life in Subjects with Chronic Pulmonary Complications Due to Sulfur Mustard: A Randomized Controlled Trial. J Diet Suppl. 2016;13:93–105. doi:10.3109/19390211.2014.952865. [PubMed] [CrossRef] [Google Scholar]

184. Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27:1883–8. doi:10.1002/ptr.4952. [PubMed] [CrossRef] [Google Scholar]

185. Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2012;108:1272–9. doi:10.1017/S0007114511006544. [PubMed] [CrossRef] [Google Scholar]

186. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic Effects of Curcumin in Inflammatory and Immune-Mediated Diseases: A Nature-Made Jack-of-All-Trades? J Cell Physiol. 2017 [PubMed] [Google Scholar]

187. Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2016 [PubMed] [Google Scholar]

188. Derosa G, Maffioli P, Simental-Mendia LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. doi:10.1016/j.phrs.2016.07.004. [PubMed] [CrossRef] [Google Scholar]

189. Sahebkar A, Cicero AF, Simental-Mendia LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-alpha levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234–42. doi:10.1016/j.phrs.2016.03.026. [PubMed] [CrossRef] [Google Scholar]

190. Lelli D, Pedone C, Sahebkar A. Curcumin and treatment of melanoma: The potential role of microRNAs. Biomed Pharmacother. 2017;88:832–834. doi:10.1016/j.biopha.2017.01.078. [PubMed] [CrossRef] [Google Scholar]

191. Ramezani M, Hatamipour M, Sahebkar A. Promising Anti-tumor properties of Bisdemethoxycurcumin: A Naturally Occurring Curcumin Analogue. J Cell Physiol. 2017 [PubMed] [Google Scholar]

192. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA Regulator in Cancer: A Review. Rev Physiol Biochem Pharmacol. 2016;171:1–38. doi:10.1007/112_2016_3. [PubMed] [CrossRef] [Google Scholar]

193. Momtazi AA, Sahebkar A. Difluorinated Curcumin: A Promising Curcumin Analogue with Improved Anti-Tumor Activity and Pharmaco*kinetic Profile. Curr Pharm Des. 2016;22:4386–97. doi:10.2174/1381612822666160527113501. [PubMed] [CrossRef] [Google Scholar]

194. Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218–227. doi:10.1016/j.phrs.2016.12.037. [PubMed] [CrossRef] [Google Scholar]

195. Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors. 2016 [PubMed] [Google Scholar]

196. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, et al. Curcumin: A new candidate for melanoma therapy? Int J Cancer. 2016;139:1683–95. doi:10.1002/ijc.30224. [PubMed] [CrossRef] [Google Scholar]

197. Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta-analysis of randomized controlled trials. Pain Medicine (United States) 2016;17:1192–1202. [PubMed] [Google Scholar]

198. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A. Curcumin Lowers Serum Lipids and Uric Acid in Subjects With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. J Cardiovasc Pharmacol. 2016;68:223–9. doi:10.1097/FJC.0000000000000406. [PubMed] [CrossRef] [Google Scholar]

199. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A. Effects of curcumin on HDL functionality. Pharmacol Res. 2017;119:208–218. doi:10.1016/j.phrs.2017.02.008. [PubMed] [CrossRef] [Google Scholar]

200. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med. 2014;22:851–7. doi:10.1016/j.ctim.2014.07.006. [PubMed] [CrossRef] [Google Scholar]

201. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014;11:123. doi:10.1038/nrcardio.2013.140-c1. [PubMed] [CrossRef] [Google Scholar]

202. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Archives of Medical Science. 2017;13:965–1005. doi:10.5114/aoms.2017.69326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Zabihi NA, Pirro M, Johnston TP, Sahebkar A. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes. Curr Pharm Des. 2016 [PubMed] [Google Scholar]

204. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of Non-alcoholic Fatty Liver Disease with Curcumin: A Randomized Placebo-controlled Trial. Phytother Res. 2016;30:1540–8. doi:10.1002/ptr.5659. [PubMed] [CrossRef] [Google Scholar]

205. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendia LE, Sahebkar A. Efficacy and Safety of Phytosomal Curcumin in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Drug Res (Stuttg) 2017 [PubMed] [Google Scholar]

206. Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J Neuroinflammation. 2014;11:59. doi:10.1186/1742-2094-11-59. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Sun Y, Dai M, Wang Y, Wang W, Sun Q, Yang G-Y, et al. Neuroprotection and Sensorimotor Functional Improvement by Curcumin after Intracerebral Hemorrhage in Mice. Journal of Neurotrauma. 2011;28:2513–2521. doi:10.1089/neu.2011.1958. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Yang Z, Zhao T, Zou Y, Zhang JH, Feng H. Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunology Letters. 2014;160:89–95. doi:10.1016/j.imlet.2014.03.005. [PubMed] [CrossRef] [Google Scholar]

209. Arai K, Wu J, Li Q, Wang X, Yu S, Li L, et al. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. PLoS ONE. 2013;8:e59843. doi:10.1371/journal.pone.0059843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Alderson P, Roberts I. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials. BMJ. 1997;314:1855–9. doi:10.1136/bmj.314.7098.1855. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Sanderco*ck PAG, Soane T, Sanderco*ck PAG. Corticosteroids for acute ischaemic stroke. 2011. [PMC free article] [PubMed] [Google Scholar]

212. Roberts I, Sydenham E, Roberts I. Barbiturates for acute traumatic brain injury. 2012. [Google Scholar]

213. Bell JD. In Vogue: Ketamine for Neuroprotection in Acute Neurologic Injury. Anesthesia & Analgesia. 2017:1. [PubMed] [Google Scholar]

214. Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia. J Neurosci Res. 2002;70:133–9. doi:10.1002/jnr.10403. [PubMed] [CrossRef] [Google Scholar]

215. Hurtado O, Hernandez-Jimenez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, et al. Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem. 2013;126:819–26. doi:10.1111/jnc.12269. [PubMed] [CrossRef] [Google Scholar]

216. Subirós N, Pérez-Saad H, Aldana L, Gibson CL, Borgnakke WS, Garcia-del-Barco D. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke. Neurological Research. 2016;38:950–958. doi:10.1080/01616412.2016.1235249. [PubMed] [CrossRef] [Google Scholar]

217. Sofroniew MV, Howe CL, Mobley WC. Nerve Growth Factor Signaling, Neuroprotection, and Neural Repair. Annual Review of Neuroscience. 2001;24:1217–1281. doi:10.1146/annurev.neuro.24.1.1217. [PubMed] [CrossRef] [Google Scholar]

218. Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. Adv Exp Med Biol. 2002;513:335–51. doi:10.1007/978-1-4615-0123-7_12. [PubMed] [CrossRef] [Google Scholar]

219. Gora-Kupilas K, Josko J. The neuroprotective function of vascular endothelial growth factor (VEGF) Folia Neuropathol. 2005;43:31–9. [PubMed] [Google Scholar]

220. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for Minocycline Neuroprotection Archives of Neurology. 2010;67 [PMC free article] [PubMed] [Google Scholar]

221. Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y. An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurologica Scandinavica. 2015;131:45–50. doi:10.1111/ane.12296. [PubMed] [CrossRef] [Google Scholar]

222. Wakai A, McCabe A, Roberts I, Schierhout G, Wakai A. Mannitol for acute traumatic brain injury. 2013. [PMC free article] [PubMed] [Google Scholar]

223. Aydin MV, Caner H, Sen O, Ozen O, Atalay B, Cekinmez M, et al. Effect of melatonin on cerebral vasospasm following experimental subarachnoid hemorrhage. Neurological Research. 2013;27:77–82. doi:10.1179/016164105X18331. [PubMed] [CrossRef] [Google Scholar]

224. Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH. Melatonin decreases mortality following severe subarachnoid hemorrhage. Journal of Pineal Research. 2008;44:197–204. doi:10.1111/j.1600-079X.2007.00508.x. [PubMed] [CrossRef] [Google Scholar]

225. Zausinger S, Westermaier T, Plesnila N, Steiger HJ, Schmid-Elsaesser R. Neuroprotection in Transient Focal Cerebral Ischemia by Combination Drug Therapy and Mild Hypothermia: Comparison With Customary Therapeutic Regimen. Stroke. 2003;34:1526–1532. doi:10.1161/01.STR.0000070841.31224.29. [PubMed] [CrossRef] [Google Scholar]

Neuroprotective Agents in the Intensive Care Unit: -Neuroprotective Agents in ICU - (2024)
Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6126

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.